Weighted Linear Recurrent Forecasting in Singular Spectrum Analysis
نویسندگان
چکیده
منابع مشابه
Forecasting U.S. Tourist Arrivals using Singular Spectrum
5 This paper introduces Singular Spectrum Analysis (SSA) for tourism demand forecasting 6 via an application into total monthly U.S. Tourist arrivals from 1996-2012. The global 7 tourism industry is today, a key driver of foreign exchange inflows to an economy. Here, we 8 compare the forecasting results from SSA with those from ARIMA, Exponential Smoothing 9 (ETS) and Neural Networks (NN). We f...
متن کاملPredicting the Brexit outcome using singular spectrum analysis
In a referendum conducted in the United Kingdom (UK) on June 23, 2016, $51.6\%$ of the participants voted to leave the European Union (EU). The outcome of this referendum had major policy and financial impact for both UK and EU, and was seen as a surprise because the predictions consistently indicate that the ``Remain'''' would get a majority. In this paper, we investigate whether the outcome o...
متن کاملTrend forecasting based on Singular Spectrum Analysis of traffic workload in a large-scale wireless LAN
Network traffic load in an IEEE802.11 infrastructure arises from the superposition of traffic accessed by wireless clients associated with access points (APs). An accurate load characterization can be beneficial in modeling network traffic and addressing a variety of problems including coverage planning, resource reservation and network monitoring for anomaly detection. This study focuses on th...
متن کاملSingular constrained linear systems
In the linear system Ax = b the points x are sometimes constrained to lie in a given subspace S of column space of A. Drazin inverse for any singular or nonsingular matrix, exist and is unique. In this paper, the singular consistent or inconsistent constrained linear systems are introduced and the effect of Drazin inverse in solving such systems is investigated. Constrained linear system arise ...
متن کاملApproximate Projectors in Singular Spectrum Analysis
Singular spectrum analysis (SSA) is a method of time-series analysis based on the singular value decomposition of an associated Hankel matrix. We present an approach to SSA using an effective and numerically stable high-degree polynomial approximation of a spectral projector, which also provides a means of time-series forecasting. Several numerical examples illustrating the algorithm are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fluctuation and Noise Letters
سال: 2019
ISSN: 0219-4775,1793-6780
DOI: 10.1142/s0219477520500108